51芜湖家教网以“让孩子自信、让家长放心”为服务宗旨,以“证件认证、星级评定”保证教员质量,以“系统化、高质量、快节奏”为服务理念,提供芜湖英语家教,芜湖数学家教,芜湖物理家教,芜湖化学家教,芜湖理科家教,芜湖文科家教,芜湖奥数家教,芜湖数理化家教,芜湖日语家教,芜湖全科家教等一对一上门家教服务。本芜湖家教中心拥有芜湖市最多家教信息及教员信息,每天都有大量最新家教信息和教员简历^_^ 
51芜湖家教网-芜湖最好的家教中心
家教热线:
请家教:15155332008
 
手机访问51芜湖家教网
芜湖请家教  芜湖做家教  芜湖家教信息  芜湖老师信息  芜湖家教收费标准  留言建议   特色小班
   当前位置:【51芜湖家教网】 → 首页资讯

小学奥数:牛吃草算极限(四年级)

来源:51芜湖家教网    点击:2610    发布日期:2010-4-30 20:24:41
芜湖家教www.51whjj.com 小学奥数四年级试题(解决牛吃草算极限问题)的多种算法:

    历史起源:英国数学家牛顿(1642—1727)说过:“在学习科学的时候,题目比规则还有用些”因此在他的著作中,每当阐述理论时,总是把许多实例放在一起。在牛顿的《普遍的算术》一书中,有一个关于求牛和头数的题目,人们称之为牛顿的牛吃草问题。

  主要类型

  1、求时间

  2、求头数

  除了总结这两种类型问题相应的解法,在实践中还要有培养运用“牛吃草问题”的解题思想解决实际问题的能力

  基本思路:

  ①在求出“每天新生长的草量”和“原有草量”后,已知头数求时间时,我们用“原有草量÷每天实际减少的草量(即头数与每日生长量的差)”求出天数。

  ②已知天数求只数时,同样需要先求出“每天新生长的草量”和“原有草量”。

  ③根据(“原有草量”+若干天里新生草量)÷天数”,求出只数。

  基本公式

  解决牛吃草问题常用到四个基本公式,分别是∶

  (1)草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷(吃的较多天数-吃的较少天数);

  (2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`

  (3)吃的天数=原有草量÷(牛头数-草的生长速度);

  (4)牛头数=原有草量÷吃的天数+草的生长速度

  第一种:一般解法

  “有一牧场,已知养牛27头,6天把草吃尽;养牛23头,9天把草吃尽。如果养牛21头,那么几天能把牧场上的草吃尽呢?并且牧场上的草是不断生长的。”

  一般解法:把一头牛一天所吃的牧草看作1,那么就有:

  (1)27头牛6天所吃的牧草为:27×6=162 (这162包括牧场原有的草和6天新长的草。)

  (2)23头牛9天所吃的牧草为:23×9=207 (这207包括牧场原有的草和9天新长的草。)

  (3)1天新长的草为:(207-162)÷(9-6)=15

  (4)牧场上原有的草为:27×6-15×6=72

  (5)每天新长的草足够15头牛吃,21头牛减去15头,剩下6头吃原牧场的草:72÷(21-15)=72÷6=12(天)

  所以养21头牛,12天才能把牧场上的草吃尽。

  第二种:公式解法

  有一片牧场,草每天都匀速生长(草每天增长量相等),如果放牧24头牛,则6天吃完牧草,如果放牧21头牛,则8天吃完牧草,假设每头牛吃草的量是相等的。(1)如果放牧16头牛,几天可以吃完牧草?(2)要使牧草永远吃不完,最多可放多少头牛?

  解答:

  1) 草的生长速度:(21×8-24×6)÷(8-6)=12(份)

  原有草量:21×8-12×8=72(份)

  16头牛可吃:72÷(16-12)=18(天)

  2) 要使牧草永远吃不完,则每天吃的份数不能多于草每天的生长份数

  所以最多只能放12头牛。





百度搜索更多内容:小学奥数:牛吃草算极限(四年级)

------本站部分文章来源互联网,版权归原作者所有,若侵犯了您权利,请联系我们。

    网友评论:

目前还没有评论


    发表评论:
* 主题:  
*内容:  
大名:
验证码:请点击后输入四位验证码

51芜湖家教网 | 安徽师范家教中心 |最新学员 |优秀教员 |收费标准 |学员常见问题 |新闻信息 |教员常见问题 |教员须知 |本站简介
欢迎您拨打服务热线电话:15155332008  芜湖市镜湖区银湖路29号 电话:0553-3872008 微信号/合作QQ号:308150188
©2010 51芜湖家教网  http://www.51whjj.com    版权所有 未经允许 不得转载 广告服务 隐私政策 法律声明 本站地图xml
网络实名:51芜湖家教网 芜湖家教 师大家教网 芜湖五一家教  ICP备案号  共执行63毫秒