51芜湖家教网以“让孩子自信、让家长放心”为服务宗旨,以“证件认证、星级评定”保证教员质量,以“系统化、高质量、快节奏”为服务理念,提供芜湖英语家教,芜湖数学家教,芜湖物理家教,芜湖化学家教,芜湖理科家教,芜湖文科家教,芜湖奥数家教,芜湖数理化家教,芜湖日语家教,芜湖全科家教等一对一上门家教服务。本芜湖家教中心拥有芜湖市最多家教信息及教员信息,每天都有大量最新家教信息和教员简历^_^ 
51芜湖家教网-芜湖最好的家教中心
家教热线:
请家教:15155332008
 
手机访问51芜湖家教网
芜湖请家教  芜湖做家教  芜湖家教信息  芜湖老师信息  芜湖家教收费标准  留言建议   特色小班
   当前位置:【51芜湖家教网】 → 首页资讯

小学数学行程问题练习题精选

来源:51芜湖家教网    点击:811    发布日期:2016-07-21 09:09:50

芜湖家教网(www.51whjj.com)搜集小学数学行程问题练习题精选:

一、相遇问题
两个运动物体作相向运动或在环形跑道上作背向运动,随着时间的发展,必然面对面地相遇,这类问题叫做相遇问题。它特点是两个运动物体共同走完整个路程。
 小学数学教材中的行程问题,一般是指相遇问题。
相遇问题根据数量关系可分成三种类型:求路程,求相遇时间,求速度。
它们的基本关系式如下:
 总路程=(甲速+乙速)×相遇时间
 相遇时间=总路程÷(甲速+乙速)
另一个速度=甲乙速度和-已知的一个速度
二、追及问题
追及问题的地点可以相同(如环形跑道上的追及问题),也可以不同,但方向一般是相同的。由于速度不同,就发生快的追及慢的问题。
根据速度差、距离差和追及时间三者之间的关系,常用下面的公式:
 距离差=速度差×追及时间
 追及时间=距离差÷速度差
 速度差=距离差÷追及时间
 速度差=快速-慢速
 解题的关键是在互相关联、互相对应的距离差、速度差、追及时间三者之中,找出两者,然后运用公式求出第三者来达到解题目的。

三、相离问题
两个运动物体由于背向运动而相离,就是相离问题。解答相离问题的关键是求出两个运动物体共同趋势的距离(速度和)。
基本公式有:
两地距离=速度和×相离时间
相离时间=两地距离÷速度和
速度和=两地距离÷相离时间
四、流水问题
  顺流而下与逆流而上问题通常称为流水问题,流水问题属于行程问题,仍然利用速度、时间、路程三者之间的关系进行解答。
  船在静水中行驶,单位时间内所走的距离叫做划行速度或叫做划力;顺水行船的速度叫顺流速度;逆水行船的速度叫做逆流速度;船放中流,不靠动力顺水而行,单位时间内走的距离叫做水流速度。各种速度的关系如下:
  (1)划行速度+水流速度=顺流速度
  (2)划行速度-水流速度=逆流速度
  (3)(顺流速度+ 逆流速度)÷2=划行速度
  (4)(顺流速度-逆流速度)÷2=水流速度
流水问题的数量关系仍然是速度、时间与距离之间的关系。即:速度×时间=距离;距离÷速度=时间;距离÷时间=速度。但是,河水是流动的,这就有顺流、逆流的区别。在计算时,要把各种速度之间的关系弄清楚是非常必要的。

基础题型
反映时间、速度、距离三者之间关系的应用题一般称为行程问题。行程问题的内容相当广泛,目前小学数学教材中行程问题仅涉及相向运动中的相遇问题。相遇问题是研究两个运动的物体,从两个不同的地方,沿同一条路线同时(或者不同时)出发,作相向运动。因此,它有三种基本形式:
第一是已知甲、乙的速度和相遇的时间,求距离;
总路程=(甲速+乙速)×相遇时间
第二是已知甲、乙的速度和距离,求相遇的时间;
相遇时间=总路程÷(甲速+乙速)
第三是已知距离,相遇时间和甲(或者乙)速度,求乙(或者甲)速度。
甲乙的速度和=总路程÷相遇时间
另一个速度=甲乙速度和-已知的一个速度
例1一辆客车与一辆货车同时从甲、乙两个城市相对开出,客车每小时行46千米,货车每小时行48千米。3.5小时两车相遇。甲、乙两个城市的路程是多少千米?
[解]46×3.5+48×3.5
=161+168
=329(千米)。
或(46+48)×3.5
=94×3.5
=329(千米)。
答:甲、乙两个城市的路程有329千米。
[常见错误]
46×3.5+48
=161+48
=209(千米)。
答:甲、乙两个城市的路程有209千米。
[分析]
这是一道相遇问题的基本题,错解中由于审题不严密,误认为只有客车行了3.5小时,货车行了48千米,两车就相遇了,因而产生了错误。如果首先理解甲、乙两城的路程就是客车与货车所行路程的和,然后分别求各自的速度与行驶的时间,就不会出现错误了。
例2两地间的路程有255千米,两辆汽车同时从两地相对开出,甲车每小时行45千米,乙车每小时行40千米。甲、乙两车相遇时,各行了多少千米?
[解]255÷(45+40)
=255÷85
=3(小时)。
45×3=135(千米)。
40×3=120(千米)。
答:相遇时甲车行了135千米,乙车行了120千米。
[常见错误]
(1)255÷(45+40)
=255÷85
=3(小时)。
45×3=135(千米)。
答:相遇时各行了135千米。
(2)255÷(45+40)
=255÷85
=3(小时)。
40×3=120(千米)。
45×3=135(千米)。
答:相遇时甲车行了120千米,乙车行了135千米。
[分析]
解题不完整,答非所问,这是应用题解答经常出现的一种错误,特别是对于粗心大意的学生来说,更是如此。防止粗心大意的办法是要养成检验的良好习惯。
例3 两地相距3300米,甲、乙二人同时从两地相对而行,甲每分钟行82米,乙每分钟行83米,已经行了15分钟,还要行多少分钟两人可以相遇?
[解][3300-(82+83)×15]÷(82+83)
=[3300-165×15]÷165
=[3300-2475]÷165
=825÷165
=5(分钟)。
答:还要5分钟两人可以相遇。
[常见错误]
(1)(82+83)×15÷(82+83)
=165×15÷165
=2475÷165
=15(分钟)。
答:还要15分钟两人可以相遇。
(2)[3300-(82+85)×15]÷82
=[3300-165×15]÷82
=[3300-2475]÷82
=825÷82
≈10.1(分钟)。
答:还要行10.1分钟两人可以相遇。
[分析]
这是一道较复杂的相遇问题,错解(1)没有求出还剩下的路程,错解(2)将剩下的路程由甲一人行走,所以两种解法都错了。防止错误的主要办法是需认真审题,理解题中已经行了多少米,还剩下多少米,剩下的路程由甲、乙两人相对行走,还要多少分钟等等。这样,用剩下的路程除以甲、乙两人的速度和,就得出还要多少分钟两人相遇。
例4 甲、乙两港的航程有480千米,上午10点一艘货船从甲港开往乙港,下午2点一艘客船从乙港开往甲港。客船开出12小时与货船相遇。已知货船每小时行15千米,客船每小时行多少千米?
[解](480-15×4)÷12-15
=(480-60)÷12-15
=420÷12-15
=35-15
=20(千米)。
答:客船每小时行20千米。
[常见错误]
(1)480÷12-15
=40-15
=25(千米)。
答:客船每小时行25千米。
(2)(480-15×4)÷12
=(480-60)÷12
=420÷12
=35(千米)。
练习题

1.一列客车和一列货车同时从两个车站相对开出,货车每小时行35千米,客车每小时行45千米,2.5小时相遇,两车站相距多少千米?
2.两个县城相距52.5千米,甲、乙二人分别从两城同时相对而行,甲每小时行5千米,乙每小时比甲快0.5千米,几小时后相遇?
3.甲、乙二人分别从相距110千米的两地相对而行。5小时后相遇,甲每小时行12千米,问乙每小时行多少千米?
4.甲、乙两站相距486千米,两列火车同时从两站相对开出,5小时相遇。第一列火车比第二列火车每小时快1.7千米,两列火车每小时的速度各是多少?
5.两列火车同时从相距650千米的两地相向而行,甲列火车每小时行50千米,乙列火车每小时行52千米,4小时后还差多少千米才能相遇?
6.大陈庄和小王庄相距90千米。小刚和小牛分别由两庄同时反向出发。2小时24分后两人相距46.6千米,如果小刚每小时行9.9千米,小牛每小时行多少千米?
7.学校距活动站670米,小明从学校前往活动站每分钟行80米,2分钟后,小丽从活动站往学校走,每分钟行90米,小明出发多少分钟后和小丽相遇?相遇时二人各行了多少米?
8.甲、乙两队合挖一条水渠,甲队从东往西挖,每天挖65米,乙队从西往东挖,每天比甲多挖2.5米。两队合挖8天后还差52米,这条水渠全长多少米?
9.张、李两位叔叔计划共同生产一种零件300个,二人一起生产了5小时后还差40个没完成。已知张叔叔每小时生产24个,李叔叔每小时生产多少个?
10.甲、乙两队合修一条长2400米的路,甲队每小时修126米,乙队每小时比甲队多修48米,求完工时两队各修路多少米?
11.东西两村相距64千米。甲、乙二人同时骑车从东西两地相对出发,2.5小时相遇。甲每小时行12.5千米,乙每小时比甲快多少千米?
12.一列客车和一列货车分别从甲、乙两地相向而行。客车每小时行50千米,货车每小时比客车慢8千米,客车先行1小时后,货车从乙地出发,经过3小时后两车相遇。甲、乙两地相距多少千米?
13.东西两城相距254千米,甲、乙两辆汽车相对开出,甲车每小时行27千米,先行2小时后,乙车开始出发,速度为每小时23千米。乙车出发几小时后两车相遇?
14.甲、乙两个工程队开凿一条隧道。甲队每天开凿1.5千米,乙队比甲队的2倍少0.5千米.半个月完成了任务,这条隧道有多长?
15.两艘客轮同时从两港相对行驶,甲轮每小时行40千米,乙轮每小时行36千米,早上8时开出,晚上11时相遇,两港口相距几千米?
16.甲、乙两个工程队同时从公路的一点向两头铺沥青,甲队每天比乙队多铺20米。已知4天后两队相距880米,两队每天各铺多少米?
17.小明和小华相距50步远,同时反向出发,小明每分钟走80步,小华每分钟走85步。当两人相距1700步时,出发了多少分钟?
18.两辆摩托车分别从相距440千米的两地同时相向而行,因雪后路滑,5小时后才相遇。甲车比原计划每小时少行15千米,乙车比原计划每小时少行7千米。已知原计划甲车每小时的速度是乙车的1.2倍,求两车原计划每小时各行多少千米?


提高篇

20:汽车从A地开往B地,如果速度比预定的每小时慢5千米,到达时间将比预定的晚八分之一,如果速度比预定的增加三分之一,到达时间将比预定早1小时,求A,B两间的路程?
21:从甲地到乙地,先是上坡路,然后就是下坡路,一辆汽车上坡速度为每小时20千米,下坡速度为每小时35千米。车从甲地到乙地共用9小时,从乙地返回到甲地共用7.5小时。求去时上坡路和下坡路分别为多少千米?
22:甲乙丙3人进行100米赛跑,当甲到达终点时,乙离终点还有20米,丙离终点还有40米。如果三人赛跑的速度不变,当乙到达终点时,丙离终点还有多少米?
23:甲.乙两车同时从A.B两地相向而行,第一次两车在距B地64公里处相遇,相遇后两车仍以原速度继续行驶,并在到达对方站后立即原路返回.途中两车在距A地48公里处相遇,两次相遇点相距多少公里?
24:.甲,乙两车同时从A,B两地出发相向而行,4小时后相遇,相遇后甲车继续行驶3小时到达B地.乙车每小时行24千米,问A,B地相距多少千米?
25:当甲在60米赛跑中冲过终点时,比乙领先10米,比丙领先20米,如果当乙和丙按原来的速度继续冲向终点,那么当乙到达终点时将比丙领先多少米?
26:.甲,乙两人分别从A,B两地同时出发,如果两人同向而行,甲经过24分钟被乙赶上,如果两人相向而行,经过4分钟两人相遇,已知甲平均没分钟走50米,问乙平均没分钟走多少米?
27:.甲乙二人从相距36千米的两地相向而行,若甲先出发2小时,则在乙动身2.5小时后两人相遇,若乙先出发2小时,则甲动身3小时后二人相遇,求甲乙二人速度.
28:.一列快车和一列慢车相向而行,快车的长是280米,慢车的车长是285米,坐在快车上的人看见慢车驶过的时间是11秒,那么做在慢车上的人看见快车驶过的时间是多少?
29: 绕湖一周是24千米,小张和小王从湖边某一地点同时出发反向而行.小王以4千米/小时速度每走1小时后休息5分钟;小张以6千米/小时速度每走50分钟后休息10分钟.问:两人出发多少时间第一次相遇?
  解:小张的速度是6千米/小时,50分钟走5千米我们可以把他们出发后时间与行程列出下表:
  12+15=27比24大,从表上可以看出,他们相遇在出发后2小时10分至3小时15分之间.
  出发后2小时10分小张已走了
  此时两人相距
  24-(8+11)=5(千米).
  由于从此时到相遇已不会再休息,因此共同走完这5千米所需时间是
  5÷(4+6)=0.5(小时).
  2小时10分再加上半小时是2小时40分.
  答:他们相遇时是出发后2小时40分.
  30: 一个圆周长90厘米,3个点把这个圆周分成三等分,3只爬虫A,B,C分别在这3个点上.它们同时出发,按顺时针方向沿着圆周爬行.A的速度是10厘米/秒,B的速度是5厘米/秒,C的速度是3厘米/秒,3只爬虫出发后多少时间第一次到达同一位置?

  解:先考虑B与C这两只爬虫,什么时候能到达同一位置.开始时,它们相差30厘米,每秒钟B能追上C(5-3)厘米0.
  30÷(5-3)=15(秒).
  因此15秒后B与C到达同一位置.以后再要到达同一位置,B要追上C一圈,也就是追上90厘米,需要 90÷(5-3)=45(秒).B与C到达同一位置,出发后的秒数是
15,,105,150,195,…… 再看看A与B什么时候到达同一位置.第一次是出发后 30÷(10-5)=6(秒),以后再要到达同一位置是A追上B一圈.需要90÷(10-5)=18(秒),
A与B到达同一位置,出发后的秒数是6,24,42,,78,96,…对照两行列出的秒数,就知道出发后60秒3只爬虫到达同一位置.答:3只爬虫出发后60秒第一次爬到同一位置.
请思考, 3只爬虫第二次到达同一位置是出发后多少秒?
31:图上正方形ABCD是一条环形公路.已知汽车在AB上的速度是90千米/小时,在BC上的速度是120千米/小时,在CD上的速度是60千米/小时,在DA上的速度是80千米/小时.从CD上一点P,同时反向各发出一辆汽车,它们将在AB中点相遇.如果从PC点M,同时反向各发出一辆汽车,它们将在AB上一点N处相遇.求 

  解:两车同时出发至相遇,两车行驶的时间一样多.题中有两个“相遇”,解题过程就是时间的计算.要计算方便,取什么作计算单位是很重要的.
设汽车行驶CD所需时间是1.根据“走同样距离,时间与速度成反比”,可得出
  
  分数计算总不太方便,把这些所需时间都乘以24.这样,汽车行驶CD,BC,AB,AD所需时间分别是24,12,16,18.
从P点同时反向各发一辆车,它们在AB中点相遇.P→D→A与 P→C→B所用时间相等.
PC上所需时间-PD上所需时间 =DA所需时间-CB所需时间=18-12=6.
而(PC上所需时间+PD上所需时间)是CD上所需时间24.根据“和差”计算得,C上所需时间是(24+6)÷2=15,PD上所需时间是24-15=9.现在两辆汽车从M点同时出发反向而行,M→P→D→A→N与M→C→B→N所用时间相等.M是PC中点.P→D→A→N与C→B→N时间相等,就有BN上所需时间-AN上所需时间=P→D→A所需时间-CB所需时间=(9+18)-12= 15.BN上所需时间+AN上所需时间=AB上所需时间=16.
立即可求BN上所需时间是15.5,AN所需时间是0.5.

32: 体育场的环形跑道长400米,小刚和小华在跑道的同一起跑线上,同时向相反方向起跑,小刚每分钟跑152米,小华每分钟跑148米。几分钟后他们第3次相遇? 解 设x分钟后他们第三次相遇152x+148x=400×3300x=1200 x=4答:4分钟后他们第3次相遇。
33: 体育场的环形跑道长400米,小刚和小华在跑道的同一起跑线上,同时向相反方向起跑,小刚每分钟跑152米,小华每分钟跑148米。几分钟后他们第3次相遇?
  解 设x分钟后他们第三次相遇 152x+148x=400×3  300x=1200 x=4
 答:4分钟后他们第3次相遇。
34:A港和B港相距662千米,上午9点一艘“寒山”号快艇从甲港开往乙港,中午12点另一艘“天远”号快艇从乙港开往甲港,到16点两艇相遇,“寒山”号每小时行54千米,“天远”号的速度比“寒山”号快多少千米?(用两种方法解)
  解“寒山”号比“天远”号快艇先开时间:
  12-9=3(小时)从“天远”号开出到与“寒山”号相遇的时间:16-12=4(小时)
  方法(1):“天远”号比“寒山”号快的千米数:(662-54×3)÷4-54-54=500÷4-54-54=125-54-54=17(千米)此题中的时间是用“时刻”替代的,只要把时刻转换成时间就简单了。换算的方法是:结束时间-开始时间= 经过时间。
  35: 甲骑摩托车,乙骑自行车,同时从相距126千米的A、B两城出发、相向而行。3小时后,在离两城中点处24千米的地方,甲、乙二人相遇。求甲、乙二人的速度各是多少?
解 甲的速度:(126÷2+24)÷3=29 (千米/小时)乙的速度:(126÷2-24)÷3= 13(千米/小时)答:甲骑摩托车的速度是每小时29千米,乙骑自行车的速度是每小时13千米。【解题关键与提示】
  此题可用线段图表示:
  如上图,中点处就是A、B两城正中间的地方,所以由中点处到A城和B城之间的距离都是(126÷2)千米。甲骑摩托车比乙骑自行车速度快,所以同样行3小时,行驶的路程比乙多,要在离中点24千米处相遇,因此,甲走的路程是(126÷2+24)千米;乙走的路程是(126÷2-24)千米。
36: A港和B港相距662千米,上午9点一艘“寒山”号快艇从甲港开往乙港,中午12点另一艘“天远”号快艇从乙港开往甲港,到16点两艇相遇,“寒山”号每小时行54千米,“天远”号的速度比“寒山”号快多少千米?(用两种方法解) 解“寒山”号比“天远”号快艇先开时间: 12-9=3(小时) 从“天远”号开出到与“寒山”号相遇的时间: 16-12=4(小时) 方法(1):“天远”号比“寒山”号快的千米数: (662-54×3)÷4-54-54=500÷4-54-54 =125-54-54 =17(千米) 方法(2):设“天远”号每小时比“寒山”号快x千米。以下略。 【解题关键与提示】 此题中的时间是用“时刻”替代的,只要把时刻转换成时间就简单了。换算的方法是:结束时间-开始时间= 经过时间。 ★★★例10 甲骑摩托车,乙骑自行车,同时从相距126千米的A、B两城出发、相向而行。3小时后,在离两城中点处24千米的地方,甲、乙二人相遇。求甲、乙二人的速度各是多少? 解 甲的速度:(126÷2+24)÷3=29 (千米/小时) 乙的速度:(126÷2-24)÷3= 13(千米/小时) 答:甲骑摩托车的速度是每小时29千米,乙骑自行车的速度是每小时13千米。 【解题关键与提示】 此题可用线段图表示: 如上图,中点处就是A、B两城正中间的地方,所以由中点处到A城和B城之间的距离都是(126÷2)千米。甲骑摩托车比乙骑自行车速度快,所以同样行3小时,行驶的路程比乙多,要在离中点24千米处相遇,因此,甲走的路程是(126÷2+24)千米;乙走的路程是(126÷2-24)千米。
37:有一个人在公路上前行,对面来了一辆汽车,他问司机:“你后面遇到一个骑自行车的人吗?”司机回答:“10分钟前我超过一个骑自行车的人。”这人继续前行,又过了10分钟与骑自行车的人相遇。已知骑自行车的速度是步行人的3倍。求汽车速度是步行人的几倍?(步行人与司机对话时间忽略不计)[7倍 画线段图解]
38:艘客轮和一艘货轮从甲乙两码头同时相对开出,当客轮行了全程的3\7时,货轮行了36千米;当客轮到达码头时,货轮行了全程的7\10.甲乙两码头相距多少千米? :"当客轮到达码头时,货轮行了全程的7\10"知道货轮速度是客轮的7/10.(在相同时间里,货轮路程是客轮的7/10)
1.客轮行了全程的3\7时,货轮行全程的多少? 3/7×7/10=3/10 2.甲乙两码头相距多少千米? 36÷3/10=120千米
39:自行车队出发12分钟后,通信员骑摩托车去追他们,在距出发地点9千米处追上了自行车队,然后通讯员立即返回出发点,到后又返回去追上了自行车队,再追上时,恰好离出发点18千米,求自行车队和摩托车的速度?
分析:比较复杂的行程问题,关键在于找到新的突破口,本题中给出了两次追击的路程,这就是突破口。
解答:从第一次追上到第二次追上的过程中,自行车队进了18-9=9(千米),而摩托车行进了:18+9=27(千米),由此可知摩托车速度是自行车队的3倍,那么第一次追及开始时,自行车领先距离为:6÷12=0.5(千米/分),摩托车速度为:0.5×3=1.5(千米/分)。
评注:在行程问题中,条件与条件之间有密切关系,充分利用所有已知条件及由这些条件推导出的条件非常重要,而要掌握所有条件首先就需要把整个行程的过程弄清楚。
40:图39是一个边长100米的正方形,甲从A点出发,每分钟走70米,乙同时从B点出发,每分钟走85米,两人都按逆时针方向沿着正方形边行进,问:乙在何处首次追上甲?乙第二次追上甲时,距B点多远。
分析与解答:乙比甲快,第一次追及距离为300米,所用时间为:300÷(85-70)=20(分钟),此时甲走了70×20=1400(米),因此首次追上时,甲、乙在C点。第二次追距离从C点开始算是一圈400米,用时为:400÷(85-70)=26又2/3(分钟),乙走的距离为:26又2/3×85=2266又2/3(米),因此乙第二次追上甲时在A、B之间距B33又1/3米处。






百度搜索更多内容:小学数学行程问题练习题精选

------本站部分文章来源互联网,版权归原作者所有,若侵犯了您权利,请联系我们。

    网友评论:

目前还没有评论


    发表评论:
* 主题:  
*内容:  
大名:
验证码:请点击后输入四位验证码

51芜湖家教网 | 安徽师范家教中心 |最新学员 |优秀教员 |收费标准 |学员常见问题 |新闻信息 |教员常见问题 |教员须知 |本站简介
欢迎您拨打服务热线电话:15155332008  芜湖市镜湖区银湖路29号 电话:0553-3872008 微信号/合作QQ号:308150188
©2010 51芜湖家教网  http://www.51whjj.com    版权所有 未经允许 不得转载 广告服务 隐私政策 法律声明 本站地图xml
网络实名:51芜湖家教网 芜湖家教 师大家教网 芜湖五一家教  ICP备案号  共执行94毫秒